Clinical Trial: Clinical Utility of Serum Biomarkers for the Management of Neonatal Hypoxic Ischemic Encephalopathy (Control Levels)

Study Status: Recruiting
Recruit Status: Recruiting
Study Type: Observational




Official Title: Clinical Utility of Serum Biomarkers for the Management of Neonatal Hypoxic Ischemic Encephalopathy (HIE) Control Levels

Brief Summary:

Hypoxic-ischemic encephalopathy (HIE) is a serious birth complication due to systemic asphyxia which occurs in about 20 of 1,000 full-term infants and nearly 60% of premature newborns. Between 10-60% of babies who exhibit HIE die during the newborn period and up to 25% of the HIE survivors have permanent neurodevelopmental handicaps in the form of cerebral palsy, mental retardation, learning disabilities, or epilepsy. HIE also has a significant financial impact on the health care system. In the state of Florida, the total cost for initial hospitalization is $161,000 per HIE patient admitted, but those costs don't take into account the life-long costs.

Current monitoring and evaluation of HIE, outcome prediction, and efficacy of hypothermia treatment rely on a combination of a neurological exam, ultrasound, magnetic resonance imaging (MRI) and electroencephalography (EEG). However, these methods do a poor job in identifying non-responders to hypothermia. MRI requires transport of the neonate with a requisite 40-45 min scan, which is not appropriate for unstable neonates. Moreover, the amplitude integrated EEG (aEEG), a common bedside monitoring technique currently used in these patients to assess candidates and predict outcomes prior to hypothermia, can be adversely affected by hypothermia itself and the patient may not appear to improve until re-warming. Consequently, the development of a simple, inexpensive, non-invasive, rapid biochemical test is essential to identify candidates for therapeutic hypothermia, to distinguish responders from non-responders and to assess outcome. This research is the first step needed to treat neonates with HIE employing a personalized medical approach using serum proteins GFAP and UCH-L1 as biomarkers and by monitoring neonates responses to therapeutic hypothermia. These biomarkers will aid in the direct care by providing a rapid test to pr