Clinical Trial: Providing Brain Control of Extracorporeal Devices to Patients With Quadriplegia

Study Status: Active, not recruiting
Recruit Status: Active, not recruiting
Study Type: Interventional




Official Title: A Feasibility Study of the Ability of the Neural Prosthetic System to Provide Direct Brain Control of Extracorporeal Devices in Patients With Quadriplegia Due to High Spin

Brief Summary:

This research study is being done to develop a brain controlled medical device, called a brain-machine interface or BMI, that will provide people with a spinal cord injury some ability to control an external device such as a computer cursor or robotic limb by using their thoughts.

Developing a brain-machine interface (BMI) is very difficult and currently only limited technology exists in this area of neuroscience. The device in this study involves implanting very fine recording electrodes into areas of the brain that are known to create arm movement plans and provide hand grasping information. These movement and grasp plans would then normally be sent to other regions of the brain to execute the actual movements. By tying into those pathways and sending the movement plan signals to a computer instead, the investigators can translate the movement plans into actual movements by a computer cursor or robotic limb.

The device being used in this study is called the NeuroPort Array and is surgically implanted in the brain. This device and the implantation procedure are experimental which means that it has not been approved by the Food and Drug Administration (FDA). One NeuroPort Array consists of a small grid of electrodes that will be implanted in brain tissue with a small cable that runs from the electrode grid to a small hourglass-shaped pedestal. This pedestal is designed to be attached to the skull and protrude though the scalp to allow for connection with the computer equipment.

The investigators hope to learn how safe and effective the NeuroPort Array is in controlling computer generated images and real world objects, such as a robotic arm, using imagined movements of the arms and hands. To accomplish this goal, two NeuroPort Arrays will be used.