Drug: Amytal Sodium

The barbiturates are nonselective central nervous system (CNS) depressants that are primarily used as sedative hypnotics. In subhypnotic doses, they are also used as anticonvulsants. The barbiturates and their sodium salts are subject to control under the Federal Controlled Substances Act. Amobarbital sodium is a white, friable, granular powder that is odorless, has a bitter taste, and is hygroscopic. It is very soluble in water soluble in alcohol, and practically insoluble in ether and chloroform. Amobarbital sodium is sodium 5-ethyl-5-isopentylbarbiturate and has the empirical formula C11H17N2Na03. Its molecular weight is 248.26. It has the following structural formula: Amobarbital sodium is a substituted pyrimidine derivative in which the basic structure is barbituric acid, a substance that has no CNS activity. Vials of amobarbital sodium are for parenteral administration. The vials contain 500 mg (2 mmol) amobarbital sodium as a sterile lyophilized powder. Last reviewed on RxList: 8/21/2009
This monograph has been modified to include the generic and brand name in many instances.

Source: http://www.rxlist.com

The following adverse reactions and their incidence were compiled from surveillance of thousands of hospitalized patients who received barbiturates. Because such patients may be less aware of certain of the milder adverse effects of barbiturates, the incidence of these reactions may be somewhat higher in fully ambulatory patients. More than 1 in 100 Patients The most common adverse reaction, estimated to occur at a rate of 1 to 3 patients per 100, is the following: Nervous System: Somnolence Less than 1 in 100 Patients Adverse reactions estimated to occur at a rate of less than 1 in 100 patients are listed below, grouped by organ system and by decreasing order of occurrence: Nervous System: Agitation, confusion, hyperkinesia, ataxia, CNS depression, nightmares, nervousness, psychiatric disturbance, hallucinations, insomnia, anxiety, dizziness, abnormality in thinking Respiratory System: Hypoventilation, apnea, postoperative atelectasis Cardiovascular System: Bradycardia, hypotension, syncope Digestive System: Nausea, vomiting, constipation Other Reported Reactions: Headache, injection site reactions, hypersensitivity reactions (angioedema, skin rashes, exfoliative dermatitis), fever, liver damage, megaloblastic anemia following chronic phenobarbital use Drug Abuse And Dependence Controlled Substance Amobarbital sodium is a Schedule II drug. Dependence Barbiturates may be habit-forming. Tolerance, psychological dependence, and physical dependence may occur, especially following prolonged use of high doses of barbiturates. Daily administration in excess of 400 mg of pentobarbital or secobarbital for approximately 90 days is likely to produce some degree of physical dependence. A dosage of 600 to 800 mg for at least 35 days is sufficient to produce withdrawal seizures. The average daily dose for the barbiturate addict is usually about 1.5 g. As tolerance to barbiturates develops, the amount needed to maintain the same level of intoxication increases; tolerance to a fatal dosage, however, does not increase more than twofold. As this occurs, the margin between intoxicating dosage and fatal dosage becomes smaller. Symptoms of acute intoxication with barbiturates include unsteady gait, slurred speech, and sustained nystagmus. Mental signs of chronic intoxication include confusion, poor judgment, irritability, insomnia, and somatic complaints. Symptoms of barbiturate dependence are similar to those of chronic alcoholism. If an individual appears to be intoxicated with alcohol to a degree that is radically disproportionate to the amount of alcohol in his or her blood, the use of barbiturates should be suspected. The lethal dose of a barbiturate is far less if alcohol is also ingested. The symptoms of barbiturate withdrawal can be severe and may cause death. Minor withdrawal symptoms may appear 8 to 12 hours after the last dose of a barbiturate. These symptoms usually appear in the following order: anxiety, muscle twitching, tremor of hands and fingers, progressive weakness, dizziness, distortion in visual perception, nausea, vomiting, insomnia, and orthostatic hypotension. Major withdrawal symptoms (convulsions and delirium) may occur within 16 hours and last up to 5 days after abrupt cessation of barbiturates. The intensity of withdrawal symptoms gradually declines over a period of approximately 15 days. Individuals susceptible to barbiturate abuse and dependence include alcoholics and opiate abusers, as well as other sedative-hypnotic and amphetamine abusers. Drug dependence on barbiturates arises from repeated administration on a continuous basis, generally in amounts exceeding therapeutic dose levels. The characteristics of drug dependence on barbiturates include: (a) a strong desire or need to continue taking the drug; (b) a tendency to increase the dose; (c) a psychic dependence on the effects of the drug related to subjective and individual appreciation of those effects; and (d) a physical dependence on the effects of the drug, requiring its presence for maintenance of homeostasis and resulting in a definite, characteristic, and self-limited abstinence syndrome when the drug is withdrawn. Treatment of barbiturate dependence consists of cautious and gradual withdrawal of the drug. Barbiturate-dependent patients can be withdrawn by using a number of different withdrawal regimens. In all cases, withdrawal requires an extended period of time. One method involves substituting a 30 mg dose of phenobarbital for each 100 to 200 mg dose of barbiturate that the patient has been taking. The total daily amount of phenobarbital is then administered in 3 or 4 divided doses, not to exceed 600 mg daily. If signs of withdrawal occur on the first day of treatment, a loading dose of 100 to 200 mg of phenobarbital may be administered IM in addition to the oral dose. After stabilization on phenobarbital, the total daily dose is decreased by 30 mg/day as long as withdrawal is proceeding smoothly. A modification of this regimen involves initiating treatment at the patient's regular dosage level and decreasing the daily dosage by 10% if tolerated by the patient. Infants that are physically dependent on barbiturates may be given phenobarbital, 3 to 10 mg/kg/day. After withdrawal symptoms (hyperactivity, disturbed sleep, tremors, and hyperreflexia) are relieved, the dosage of phenobarbital should be gradually decreased and completely withdrawn over a 2-week period. Read the Amytal Sodium (amobarbital sodium injection) Side Effects Center for a complete guide to possible side effectsLearn More »

Source: http://www.rxlist.com

The dose of amobarbital sodium must be individualized with full knowledge of its particular characteristics and recommended rate of administration. Factors of consideration are the patient's age, weight, and condition. The maximum single dose for an adult is 1 g. Intramuscular Use Intramuscular injection of the sodium salts of barbiturates should be made deeply into a large muscle. The average intramuscular dose ranges from 65 mg to 0.5 g. A volume of 5 mL (irrespective of concentration) should not be exceeded at any one site because of possible tissue irritation. Twenty percent solutions may be used so that a small volume can contain a large dose. After IM injection of a hypnotic dose, the patient's vital signs should be monitored. Superficial intramuscular or subcutaneous injections may be painful and may produce sterile abscesses or sloughs. Intravenous Use Intravenous injection is restricted to conditions in which other routes are not feasible, either because the patient is unconscious (as in cerebral hemorrhage, eclampsia, or status epilepticus), because the patient resists (as in delirium), or because prompt action is imperative. Slow IV injection is essential, and patients should be carefully observed during administration. This requires that blood pressure, respiration, and cardiac function be maintained, vital signs be recorded and equipment for resuscitation and artificial ventilation be available. The rate of IV injection for adults should not exceed 50 mg/min to prevent sleep or sudden respiratory depression. The final dosage is determined to a great extent by the patient's reaction to the slow administration of the drug. Adults:
  1. Sedative: 30 to 50 mg given 2 or 3 times daily.
  2. Hypnotic: 65 to 200 mg at bedtime.
Special Patient Population Dosage should be reduced in the elderly or debilitated because these patients may be more sensitive to barbiturates. Dosage should be reduced for patients with impaired renal function or hepatic disease. Ordinarily, an intravenous dose of 65 mg to 0.5 g may be given to a child 6 to 12 years of age.

Source: http://www.rxlist.com

Most reports of clinically significant drug interactions occurring with the barbiturates have involved phenobarbital. However, the application of these data to other barbiturates appears valid and warrants serial blood level determinations of the relevant drugs when there are multiple therapies.
  1.  Anticoagulants - Phenobarbital lowers the plasma levels of dicumarol and causes a decrease in anticoagulant activity as measured by the prothrombin time. Barbiturates can induce hepatic microsomal enzymes, resulting in increased metabolism and decreased anticoagulant response of oral anticoagulants (eg, warfarin, acenocoumarol, dicumarol, and phenprocoumon). Patients stabilized on anticoagulant therapy may require dosage adjustments if barbiturates are added to or withdrawn from their dosage regimen.
  2.  Corticosteroids - Barbiturates appear to enhance the metabolism of exogenous corticosteroids, probably through the induction of hepatic microsomal enzymes. Patients stabilized on corticosteroid therapy may require dosage adjustments if barbiturates are added to or withdrawn from their dosage regimen.
  3.  Griseofulvin - Phenobarbital appears to interfere with the absorption of orally administered griseofulvin, thus decreasing its blood level. The effect of the resultant decreased blood levels of griseofulvin on therapeutic response has not been established. However, it would be preferable to avoid concomitant administration of these drugs.
  4.  Doxycycline - Phenobarbital has been shown to shorten the half-life of doxycycline for as long as 2 weeks after barbiturate therapy is discontinued.
    This mechanism is probably through the induction of hepatic microsomal enzymes that metabolize the antibiotic. If amobarbital sodium and doxycycline are administered concurrently, the clinical response to doxycycline should be monitored closely.
  5.  Phenytoin, Sodium Valproate, Valproic Acid - The effect of barbiturates on the metabolism of phenytoin appears to be variable. Some investigators report an accelerating effect, whereas others report no effect. Because the effect of barbiturates on the metabolism of phenytoin is not predictable, phenytoin and barbiturate blood levels should be monitored more frequently if these drugs are given concurrently. Sodium valproate and valproic acid appear to increase the amobarbital sodium serum levels; therefore, amobarbital sodium blood levels should be closely monitored and appropriate dosage adjustments made as clinically indicated.
  6.  CNS Depressants - The concomitant use of other CNS depressants, including other sedatives or hypnotics, antihistamines, tranquilizers, or alcohol, may produce additive depressant effects.
  7.  Monoamine Oxidase Inhibitors (MAOIs) - MAOIs prolong the effects of barbiturates, probably because metabolism of the barbiturate is inhibited.
  8.  Estradiol, Estrone, Progesterone, and Other Steroidal Hormones - Pre treatment with or concurrent administration of phenobarbital may decrease the effect of estradiol by increasing its metabolism. There have been reports of patients treated with antiepileptic drugs (eg, phenobarbital) who become pregnant while taking oral contraceptives. An alternate contraceptive method might be suggested to women taking barbiturates.
Last reviewed on RxList: 8/25/2009
This monograph has been modified to include the generic and brand name in many instances.

Source: http://www.rxlist.com

  1.  Sedative
  2.  Hypnotic, for the short-term treatment of insomnia, since it appears to lose its effectiveness for sleep induction and sleep maintenance after 2 weeks (see CLINICAL PHARMACOLOGY).
  3.  Pre anesthetic

Source: http://www.rxlist.com

Amobarbital sodium is contraindicated in patients who are hypersensitive to barbiturates, in patients with a history of manifest or latent porphyria, and in patients with marked impairment of liver function or respiratory disease in which dyspnea or obstruction is evident.Last reviewed on RxList: 8/21/2009
This monograph has been modified to include the generic and brand name in many instances.

Source: http://www.rxlist.com

The toxic dose of barbiturates varies considerably. In general, an oral dose of 1 g of most barbiturates produces serious poisoning in an adult. Toxic effects and fatalities have occurred following overdoses of amobarbital sodium alone and in combination with other CNS depressants. Death commonly occurs after 2 to 10 g of ingested barbiturate. The sedated, therapeutic blood levels of amobarbital range between 2 to 10 mcg/mL; the usual lethal blood level ranges from 40 to 80 mcg/mL Barbiturate intoxication may be confused with alcoholism, bromide intoxication, and various neurologic disorders. Potential tolerance must be considered when evaluating significance of dose and plasma concentration. Signs and Symptoms Symptoms of oral overdose may occur within 15 minutes beginning with CNS depression, absent or sluggish reflexes, under ventilation, hypotension, and hypothermia and may progress to pulmonary edema and death. Hemorrhagic blisters may develop, especially at pressure points. In extreme overdose, all electrical activity in the brain may cease, in which case a "flat" EEG normally equated with clinical death cannot be accepted. This effect is fully reversible unless hypoxic damage occurs. Consideration should be given to the possibility of barbiturate intoxication even in situations that appear to involve trauma. Complications such as pneumonia, pulmonary edema, cardiac arrhythmias, congestive heart failure, and renal failure may occur. Uremia may increase CNS sensitivity to barbiturates if renal function is impaired. Differential diagnosis should include hypoglycemia, head trauma, cerebrovascular accidents, convulsive states, and diabetic coma. Treatment To obtain up-to-date information about the treatment of overdose, a good resource is your certified Regional Poison Control Center. Telephone numbers of certified poison control centers are listed in the Physicians' Desk Reference (PDR). In managing overdosage, consider the possibility of multiple drug overdoses, interaction among drugs, and unusual drug kinetics in your patient. Protect the patient's airway and support ventilation and perfusion. Meticulously monitor and maintain, within acceptable limits, the patient's vital signs, blood gases, serum electrolytes, etc. Absorption of drugs from the gastrointestinal tract may be decreased by giving activated charcoal, which, in many cases, is more effective than emesis or lavage; consider charcoal instead of or in addition to gastric emptying. Repeated doses of charcoal over time may hasten elimination of some drugs that have been absorbed. Safeguard the patient's airway when employing gastric emptying or charcoal. Diuresis and peritoneal dialysis are of little value; hemodialysis and hemoperfusion enhance drug clearance and should be considered in serious poisoning. If the patient has chronically abused sedatives, withdrawal reactions may be manifest following acute overdose. Preparation Of Solution Solutions of amobarbital sodium should be made up aseptically with Sterile Water for Injection. The accompanying table will aid in preparing solutions of various concentrations. Ordinarily, a 10% solution is used. After Sterile Water for Injection is added, the vial should be rotated to facilitate solution of the powder. Do not shake the vial. Several minutes may be required for the drug to dissolve completely, but under no circumstances should a solution be injected if it has not become absolutely clear within 5 minutes. Also, a solution that forms a precipitate after clearing should not be used. Amobarbital sodium hydrolyzes in solution or on exposure to air. Not more than 30 minutes should elapse from the time the vial is opened until its contents are injected. Prior to administration, parenteral drug products should be inspected visually for particulate matter and discoloration whenever solution containers permit. Quantity of Sterile Water for Injection Required to Dilute the Contents of a Given Vial of amobarbital sodium to Obtain the Percentages Listed.
Solutions Derived Will Be in Weight/Volume.
AMOBARBITAL SODIUM Content in Weight 1% 2.5% 5% 10% 20% 0.5 g 50 mL 20 mL 10 mL 5 mL 2.5 mL

Source: http://www.rxlist.com

Amytal Sodium (amobarbital sodium injection) Vials are available in: The 0.5 g (dry powder) vials are available as follows: 1 UNIT-PACK NDC 42998-303-01 Store at 59° to 86°F (15° to 30°C). Manufactured for: Marathon Pharmaceuticals Deerfield, IL 60015 USA. By: AAlPharma Charleston, SC 29405 USA. September 2008. Last reviewed on RxList: 8/21/2009
This monograph has been modified to include the generic and brand name in many instances.

Source: http://www.rxlist.com

General Barbiturates may be habit forming. Tolerance and psychological and physical dependence may occur with continuing use (see Drug Abuse and Dependence). Barbiturates should be administered with caution, if at all, to patients who are mentally depressed, have suicidal tendencies, or have a history of drug abuse. Particular caution is also indicated before administering barbiturates to patients who have abused other classes of drugs (see WARNINGS). Elderly or debilitated patients may react to barbiturates with marked excitement, depression, or confusion. In some persons, especially children, barbiturates repeatedly produce excitement rather than depression. In patients with hepatic damage, barbiturates should be administered with caution and initially in reduced doses. Barbiturates should not be administered to patients showing the premonitory signs of hepatic coma. Parenteral solutions of barbiturates are highly alkaline. Therefore, extreme care should be taken to avoid perivascular extravasation or intra-arterial injection. Extravascular injection may cause local tissue damage with subsequent necrosis; consequences of intra-arterial injection may vary from transient pain to gangrene of the limb. Any complaint of pain in the limb warrants stopping the injection. The systemic effects of exogenous and endogenous corticosteroids may be diminished by amobarbital sodium. Thus, this product should be administered with caution to patients with borderline hypoadrenal function, regardless of whether it is of pituitary or of primary adrenal origin. Laboratory Tests Prolonged therapy with barbiturates should be accompanied by periodic evaluation of organ systems, including hematopoietic, renal, and hepatic systems (see General under PRECAUTIONS and ADVERSE REACTIONS). Carcinogenesis
  1. Animal Data. Phenobarbital sodium is carcinogenic in mice and rats after lifetime administration. In mice, it produced benign and malignant liver cell tumors. In rats, benign liver cell tumors were observed very late in life.
  2. Human Data. In a 29-year epidemiologic study of 9,136 patients who were treated on an anticonvulsant protocol that included phenobarbital, results indicated a higher than normal incidence of hepatic carcinoma. Previously, some of these patients had been treated with thorotrast, a drug that is known to produce hepatic carcinomas. Thus, this study did not provide sufficient evidence that phenobarbital sodium is carcinogenic in humans.
A retrospective study of 84 children with brain tumors matched to 73 normal controls and 78 cancer controls (malignant disease other than brain tumors) suggested an association between exposure to barbiturates prenatally and an increased incidence of brain tumors. Usage in Pregnancy
  1. Teratogenic Effects. Pregnancy Category D - See Usage in Pregnancy under WARNINGS.
  2. Nonteratogenic Effects - Reports of infants suffering from long-term barbiturate exposure in utero included the acute withdrawal syndrome of seizures and hyperirritability from birth to a delayed onset of up to 14 days [see Drug Abuse and Dependence).
Labor and Delivery Hypnotic doses of barbiturates do not appear to impair uterine activity significantly during labor. Full anesthetic doses of barbiturates decrease the force and frequency of uterine contractions. Administration of sedative-hypnotic barbiturates to the mother during labor may result in respiratory depression in the newborn. Premature infants are particularly susceptible to the depressant effects of barbiturates. If barbiturates are used during labor and delivery, resuscitation equipment should be available. Data are not available to evaluate the effect of barbiturates when forceps delivery or other intervention is necessary or to determine the effect of barbiturates on the later growth, development, and functional maturation of the child. Nursing Mothers Caution should be exercised when amobarbital sodium is administered to a nursing woman because small amounts of barbiturates are excreted in the milk. Usage in Children Safety and effectiveness have not been established in children below the age of 6 years. Last reviewed on RxList: 8/21/2009
This monograph has been modified to include the generic and brand name in many instances.

Source: http://www.rxlist.com

Health Services in Toronto

Drug Database Online

Welcome to WebHealthNetwork an online drug guide and dictionary, here you can get drug information and definitaions for most popular pharmaceutical and medicinal drugs, and specifically Amytal Sodium. Find what medications you are taking today.