Clinical Trial: Simple Intensive Care Studies I (SICS-I)

Study Status: Recruiting
Recruit Status: Recruiting
Study Type: Observational [Patient Registry]




Official Title: Combining Conventional With Advanced Hemodynamic Parameters for Predicting the Outcome of Critically Ill Patients: a Pilot for a Registry

Brief Summary:

Circulatory shock is a condition of generalized inadequate blood flow through the body, leading to insufficient tissue perfusion and inadequate delivery of oxygen and other nutrients, to the extent that tissues are damaged. Four basic mechanisms of circulatory failure are distinguished, caused by a scale of underlying illnesses: distributive, hypovolemic, obstructive and cardiogenic shock. The last three types are characterized by a low cardiac output and hypovolemia. Distributive shock is characterized by peripheral circulation failure, with a low systemic vascular resistance, a disturbed microcirculation and a high cardiac output. Frequently, these forms overlap.

Shock is a common problem in the intensive care unit (ICU) as it affects about one third of the patients. Septic shock appears to be the most common type, followed by cardiogenic and hypovolemic shock. The diagnosis of shock is based on clinical examination with use of well-known circulatory parameters such as blood pressure and heart rate; biochemical parameters such as lactate and direct (semi-)invasive measurement of cardiac output and other variables.

Since cardiac output is an important determinant of oxygen delivery, many different methods of measuring cardiac output have been suggested. These methods range from non-invasive to invasive measurements with central lining. The most invasive method, the pulmonary artery catheter (PAC) has long been considered the optimal form of monitoring cardiac output by using thermodilution. However, this technique is associated with adverse events, such as bleeding, and there is no clear evidence of improved outcome. Therefore, numerous other techniques have been proposed, ranging from systems that use the dilution technique but only require central venous and peripheral artery lines; to less invasive tools that estimate