Clinical Trial: Effects of Shoe Cushioning and Body Mass on Injury Risk in Running

Study Status: Not yet recruiting
Recruit Status: Not yet recruiting
Study Type: Interventional




Official Title: Role of Shoe Cushioning, Body Mass and Running Biomechanics on Injury Risk: a Randomized Controlled Trial

Brief Summary:

The main goal is to investigate the influence of shoe cushioning and body mass on the risk of running-related injury. This study will allow to determine if shoe cushioning needs to be adapted to the mass of the runner in order to minimize injury risk. The influence of shoe cushioning on running technique will also be investigated.

This study consists in a 6-month follow-up period during which leisure-time runners are required to perform a running activity at least once a week and to upload all their running as well as other sporting activities onto a secured web-based training calendar named "Training and Injury Prevention Platform for Sports" (TIPPS) on a weekly basis. Any injury sustained during this period should also be uploaded onto the TIPPS system using the injury questionnaire provided on the website. Finally, the day of the visit to the laboratory (study start), their running style will be analysed during a 15-minute run on an instrumented treadmill at the participant's usual running speed. Anthropometric measurements will also taken.

Before the beginning of the study, the participants will receive a pair of running shoes free of charge. These shoes will either have a soft or hard sole. Both shoe versions have cushioning properties that correspond to the range of values from the shoes available on the market. They will be administered through random allocation. Neither the participants nor the research team will know which shoe version was provided to the participant, in order to respect the double-blinded methodology of this study. The participants will be required to use these shoes for all running sessions, and only for running activities.

Hypotheses:

H1: Running shoes with greater stiffness are associa